NEUROPLASTICITY AND REHABILITATION FOR PHANTOM PAIN AFTER AMPUTATION

Authors

DOI:

https://doi.org/10.32782/2221-1217-2025-2-02

Keywords:

neuroplasticity, phantom pain, rehabilitation methods

Abstract

The article describes modern views on the essence, types, values and mechanisms of neuroplasticity, as well as the factors that affect it. Neuroplasticity plays a key role in the emergence and treatment of phantom pain. At present, scientists say that phantom pain is the result of adaptive cortical plasticity, which is caused by long sensory experience and changes in the brain organization, and not just the consequences of non-adaptive changes or neural degradation, as it was thought before. This forces one to rethink how the brain organizes its functions after amputation, and opens up new opportunities for the treatment of phantom pain. Changes after the loss of the limb in important areas of the cerebral hemisphere – motor and somatosensory – are described. After amputation, the patient may feel that he may move a lost limb. In this case, the corresponding bark zone in the precentral gyrus is activated. It is suggested that phantom pain can be the result of an imbalance between such motor commands and the absence of sensory feedback and may contribute to the occurrence of phantom pain. After amputation, the nervous system can misinterpret the signals coming from the remains of the limb. It can also cause a feeling of phantom pain. After amputation, sensitive impulses from the lost limb disappear, as a result, the reorganization of cortical maps occurs, the phenomenon of “mirror pain” and “telescoping” is manifested. High-field neuroimaging and multidimensional methods provide new opportunities for the study of somatosensory representations in the bark of the absent limb. Cortical mapping can be used as a potential landmark for rehabilitation monitoring after peripheral injuries. The main approaches that use neuroplasticity to relieve phantom pain include: proprioceptive training, mirror therapy, virtual reality, sensory and motor stimulation, cognitive-behavioral therapy, etc. A deep understanding of the motor and sensory restructuring of the peripheral and central nervous system, which occurs after amputation, can help to improve clinical interventions to improve the quality of life of people with the acquired loss of limbs.

References

1. Матвієнко Ю.О., Матвієнко Я.В. Нейропластичність (Огляд проблеми). Феномен людини. Здоровий спосіб життя. 2022. Вип. 105 (171). C. 31–40.

2. Невмержицька Н.М., Яременко Л.М., Грабовий О.М. Роль мезенхімальних стовбурових клітин у регенерації периферичного нерва. Pathologia. 2024. Vol. 21. № 2. С. 170–176.

3. Abraham W.C., Bear M.F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosciences. 1996. Volume 19. № 4. P. 126–130. DOI: https://doi.org/10.1016/S0166-2236(96)80018-X

4. Alvites R.D., Branquinho M.V., Sousa A.C., Amorim I., Magalhães R., João F. et al. Combined Use of Chitosan and Olfactory Mucosa Mesenchymal Stem/Stromal Cells to Promote Peripheral Nerve Regeneration In Vivo. Stem Cells Int. 2021. 2021:6613029. DOI: https://doi.org/10.1155/2021/6613029

5. Andoh J., Diers M., Milde C., Frobel C., Kleinbohl D., Flor H. Neural correlates of evoked phantom limb sensations. Biol. Psychol. 2017. 126. P. 89–97. DOI: https://doi.org/10.1016/j.biopsycho.2017.04.009

6. Andoh J., Milde C., Tsao J.W., Flor H. Cortical plasticity as a basis of phantom limb pain: Fact or fiction? Neuroscience. 2018. № 387. P. 85–91. DOI: https://doi.org/10.1016/j.neuroscience.2017.11.015

7. Aternali A., Katz J. Recent advances in understanding and managing phantom limb pain. F1000Research. 2019. № 8. P. 1167. DOI: https://doi.org/10.12688/f1000research.19355.1

8. Barbin J., Seetha V., Casillas J.M., Paysant J., Pérennou D. The effects of mirror therapy on pain and motor control of phantom limb in amputees: a systematic review. Ann Phys Rehabil Med. 2016. № 59. P. 270–275. DOI: https://doi.org/10.1016/j.rehab.2016.04.001

9. Bliss T.V. P., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant 1 path. Journal of Physiology. 1973. № 232 (2). Р. 331–356. DOI: https://doi.org/10.1113/jphysiol.1973.sp010273

10. Blume K.R., Dietrich C., Huonker R., Götz T., Sens E., Friedel R. et al. Cortical reorganization after macroreplantation at the upper extremity: a magnetoencephalographic study. Brain. 2014. № 137. P. 757–769. DOI: https://doi.org/10.1093/brain/awt366

11. Campo-Prieto P., Rodríguez-Fuentes G. Effectiveness of mirror therapy in phantom limb pain: a literature review. Neurologia (Engl Ed). 2022. № 37 (8). P. 668–681. DOI: https://doi.org/10.1016/j.nrleng.2018.08.005

12. Chen A., Yao J., Kuiken T., Dewald J.P.A. Cortical motor activity and reorganization following upper-limb amputation and subsequent targeted reinnervation. Neuroimage Clin. 2013. № 3. P. 498–506. DOI: https://doi.org/10.1016/j.nicl.2013.10.001

13. Chen R., Corwell B., Yaseen Z., Hallett M., Cohen L.G. Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci. 1998. № 18 (9). P. 3443–3450. DOI: https://doi.org/10.1523/JNEUROSCI.18-09-03443.1998

14. Citri A., Malenka R.C. Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology. 2008. № 33. P. 18–41. DOI: https://doi.org/10.1038/sj.npp.1301559

15. de Sousa F.M.S., Ordônio T.F., Santos G.C.J., Santos L.E.R., Calazans C.T., Gomes D.A., Meireles S.T. Effects of Physical Exercise on Neuroplasticity and Brain Function: A Systematic Review in Human and Animal Studies. Neural Plast. 2020. 8856621. DOI: https://doi.org/10.1155/2020/8856621

16. Duarte D., Bauer C.C.C., Pinto C.B., Velez F.G.S., Estudillo-Guerra M.A., Pacheco-Barrios K. et al. Cortical plasticity in phantom limb pain: A fMRI study on the neural correlates of behavioral clinical manifestations. Psychiatry Res Neuroimaging. 2020. № 304. 111151. DOI: https://doi.org/10.1016/j.pscychresns.2020.111151

17. Fernandes D., Carvalho A.L. Mechanisms of homeostatic plasticity in the excitatory synapse. J Neurochem. 2016. № 139 (6). P. 973–996. DOI: https://doi.org/10.1111/jnc.13687

18. Flor H. Phantom-limb pain: characteristics, causes, and treatment. Lancet Neurol. 2002. № 1 (3). P. 182–189. DOI: https://doi.org/10.1016/S1474-4422(02)00074-1

19. Foell J., Bekrater-Bodmann R., Diers M., Flor H. Mirror therapy for phantom limb pain. EJP. 2014. № 18. P. 729–739. DOI: https://doi.org/10.1002/j.1532-2149.2013.00433.x

20. Gazerani P. The neuroplastic brain: current breakthroughs and emerging frontiers. Brain research. 2025. № 1858. 149643. DOI: https://doi.org/10.1016/j.brainres.2025.149643

21. Grüsser S.M., Diers M., Flor H. Phantom limb pain: aspects of neuroplasticity and intervention. Anasthesiol Intensivmed Notfallmed Schmerzther. 2003. № 38 (12). Р. 762–766. DOI: https://doi.org/10.1055/s-2003-45403

22. Guémann M., Olié E., Raquin L., Courtet P., Nathan R. Effect of mirror therapy in the treatment of phantom limb pain in amputees: A systematic review of randomized placebo-controlled trials does not find any evidence of efficacy. Eur J Pain. 2023. № 27 (1). P. 3–13. DOI: https://doi.org/10.1002/ejp.2035

23. Hebb D.O. The Organization of Behavior: A Neuropsychological Theory. New York: Psychology Press, 2005. 279 р.

24. Huber D., Gutnisky D.A., Peron S., O’Connor D.H., Wiegert J.S., Tian L. Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature. 2012. № 484. Р. 473–478. DOI: https://doi.org/10.1038/nature11039

25. Ismail F.Y., Fatemi A., Johnston M.V. Cerebral plasticity: Windows of opportunity in the developing brain. Eur J Paediatr Neurol. 2017. № 21 (1). Р. 23–48. DOI: https://doi.org/10.1016/j.ejpn.2016.07.007

26. Issa C.J., Svientek S.R., Dehdashtian A., Cederna P.S., Kemp S.W.P. Pathophysiological and Neuroplastic Changes in Postamputation and Neuropathic Pain: Review of the Literature. Plast Reconstr Surg Glob Open. 2022. № 10 (9). e4549. DOI: https://doi.org/10.1097/GOX.0000000000004549

27. Kikkert S., Johansen-Berg H., Tracey I., Makin T.R. Reaffirming the link between chronic phantom limb pain and maintained missing hand representation. Cortex. 2018. 106. P. 174–184. DOI: https://doi.org/10.1016/j.cortex.2018.05.013

28. Knobloch M., Jessberger S. Metabolism and neurogenesis. Curr Opin Neurobiol. 2017. № 42. Р. 45–52. DOI: https://doi.org/10.1016/j.conb.2016.11.006

29. Kubiak C.A., Grochmal J., Kung T.A., Cederna P.S., Midha R., Kemp S.W.P. Stem-cell-based therapies to enhance peripheral nerve regeneration. Muscle Nerve. 2020. № 61 (4). Р. 449–459. DOI: https://doi.org/10.1002/mus.26760

30. Külünkoğlu B.A., Erbahçeci F., Alkan A. A comparison of the effects of mirror therapy and phantom exercises on phantom limb pain. Turk J Med Sci. 2019. № 49 (1). P. 101–109. doi: 10.3906/sag-1712-166. DOI: https://doi.org/10.3906/sag-1712-166

31. Langer N., Hanggi J., Muller N.A., Simmen H.P., Jancke L. Effects of limb immobilization on brain plasticity. Neurology. 2012. № 78. P. 182–188. DOI: https://doi.org/10.1212/WNL.0b013e31823fcd9c

32. Lavorato A., Raimondo S., Boido M., Muratori L., Durante G., Cofano F. et al. Mesenchymal Stem Cell Treatment Perspectives in Peripheral Nerve Regeneration: Systematic Review. Int J Mol Sci. 2021. № 22 (2). Р. 572. DOI: https://doi.org/10.3390/ijms22020572

33. Lyu Y., Guo X., Bekrater-Bodmann R., Flor H., Tong S. Phantom limb perception interferes with motor imagery after unilateral upper-limb amputation. Sci Rep. 2016. № 6. 21100. DOI: https://doi.org/10.1038/srep21100

34. Maihöfner C., Nickel F. T., Seifert F. Neuropathic pain and neuroplasticity in functional imaging studies. Schmerz. 2010. № 24 (2). Р. 137–145. DOI: https://doi.org/10.1007/s00482-010-0902-6

35. Makin T.R. Phantom limb pain: thinking outside the (mirror) box. Brain. 2021. № 144 (7). Р. 1929–1932. DOI: https://doi.org/10.1093/brain/awab139

36. Makin T.R., Flor H. Brain (re)organization following amputation: Implications for phantom limb pain. Neuroimage. 2020. № 218. Р. 116943. DOI: https://doi.org/10.1016/j.neuroimage.2020.116943

37. Makino H., Hwang E.J., Hedrick N.G., Komiyama T. Circuit mechanisms of sensorimotor learning. Neuron. 2016. № 92. P. 705–721. DOI: https://doi.org/10.1016/j.neuron.2016.10.029

38. Mathot F., Shin A.Y., Van Wijnen A.J. Targeted stimulation of MSCs in peripheral nerve repair. Gene. 2019. № 710. Р. 17–23. DOI: https://doi.org/10.1016/j.gene.2019.02.078

39. Melzack R., Coderre T.J., Katz J., Vaccarino A.L. Central neuroplasticity and pathological pain. Ann N Y Acad Sci. 2001. № 933. Р. 157–174. DOI: https://doi.org/10.1111/j.1749-6632.2001.tb05822.x

40. Ol H.S., Heng Y.V., Danielsson L., Husum H. Mirror therapy for phantom limb and stump pain: a randomized controlled clinical trial in landmine amputees in Cambodia. Scand J Pain. 2018. № 18 (4). Р. 603–610. DOI: https://doi.org/10.1515/sjpain-2018-0042

41. Preissler S., Dietrich C., Blume K.R., Hofmann G.O., Miltner W.H.R., Weiss T. Plasticity in the visual system is associated with prosthesis use in phantom limb pain. Front. Hum. Neurosci. 2013. № 7. P. 311. DOI: https://doi.org/10.3389/fnhum.2013.00311

42. Puderbaugh M., Emmady P.D. Neuroplasticity. Natiomal Library of Medicine. 2023. URL: https://www.ncbi.nlm.nih.gov/books/NBK557811.

43. Raffin E., Mattout J., Reilly K.T., Giraux P. Disentangling motor execution from motor imagery with the phantom limb. Brain. 2012. № 135. P. 582–595. DOI: https://doi.org/10.1093/brain/awr337

44. Rajendram C., Ken-Dror G., Han T., Sharma P. Efficacy of mirror therapy and virtual reality therapy in alleviating phantom limb pain: a meta-analysis and systematic review. BMJ Mil Health. 2022. № 168 (2). P. 173–177. DOI: https://doi.org/10.1136/bmjmilitary-2021-002018

45. Ramachandran V.S., Hirstein W. The perception of phantom limbs. The D.O. Hebb lecture. Brain. 1998. Vol. 121. № 9. Р. 1603–1630. DOI: https://doi.org/10.1093/brain/121.9.1603

46. Ramachandran V.S., Rogers-Ramachandran D. Phantom limbs and neural plasticity. Arch Neurol. 2000. № 57 (3). P. 317–320. DOI: https://doi.org/10.1001/archneur.57.3.317

47. Sampaio-Baptista C., Johansen-Berg H. White matter plasticity in the adult brain. Neuron. 2017. № 96. Р. 1239–1251. DOI: https://doi.org/10.1016/j.neuron.2017.11.026

48. Sator-Katzenschlager S. Pain and neuroplasticity. Revista Médica Clínica Las Condes. 2014. Vol. 25. № 4. P. 699–706. DOI: https://doi.org/10.1016/S0716-8640(14)70091-4

49. Sparling T., Iyer L., Pasquina P., Petrus E. Cortical Reorganization after Limb Loss: Bridging the Gap between Basic Science and Clinical Recovery. J Neurosci. 2024. № 44 (1). e1051232024. DOI: https://doi.org/10.1523/JNEUROSCI.1051-23.2023

50. Sweatt J.D. Neural plasticity and behavior – sixty years of conceptual advances. J Neurochem. 2016. № 2. Р. 179–199. DOI: https://doi.org/10.1111/jnc.13580

51. Turrigiano G.G., Nelson S.B. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci. 2004. № 5 (2). Р. 97–107. DOI: https://doi.org/10.1038/nrn1327

52. Uz M., Das S.R., Ding S., Sakaguchi D.S., Claussen J.C., Mallapragada S.K. Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Adv Healthc Mater. 2018. № 7 (14). e1701046. DOI: https://doi.org/10.1002/adhm.201701046

53. Wefelmeyer W., Puhl C. J, Burrone J. Homeostatic Plasticity of Subcellular Neuronal Structures: From Inputs to Outputs. Trends Neurosci. 2016. № 39 (10). Р. 656–667. DOI: https://doi.org/10.1016/j.tins.2016.08.004

54. Wulf G., Lewthwaite R. Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning. Psychonomic bulletin & review. 2016. № 23. Р. 1382–414. DOI: https://doi.org/10.3758/s13423-015-0999-9

55. Xie H.M., Zhang K.X., Wang S., Wang N., Wang N., Li X., Huang L.P. Effectiveness of Mirror Therapy for Phantom Limb Pain: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil. 2022. № 103 (5). Р. 988–997. DOI: https://doi.org/10.1016/j.apmr.2021.07.810

56. Ye Z., Wei J., Zhan C., Hou J. Role of Transforming Growth Factor Beta in Peripheral Nerve Regeneration: Cellular and Molecular Mechanisms. Front Neurosci. 2022. № 16. 917587. DOI: https://doi.org/10.3389/fnins.2022.917587

57. Zucker R.S., Regehr W.G. Short-term synaptic plasticity. Annu Rev Physiol. 2002. № 64. Р. 355–405. DOI: https://doi.org/10.1146/annurev.physiol.64.092501.114547

Published

2025-11-27

Issue

Section

THERAPY AND REHABILITATION